Paradoxul Banach-Tarski

Парадокс Ба́наха — Та́рского (также называется парадоксом удвоения шара и парадоксом Хаусдо́рфа — Банаха — Тарского) — теорема в теории множеств, утверждающая, что трёхмерный шар равносоставлен двум своим копиям.

Два подмножества евклидова пространства называются равносоставленными, если одно можно разбить на конечное число (не обязательно связных) попарно непересекающихся частей, передвинуть их и составить из них второе (в промежуточном положении части могут пересекаться, а в начальном и конечном не могут).

Более точно, два множества и являются равносоставленными, если их можно представить как конечное объединение попарно непересекающихся подмножеств , так, что для каждого подмножество конгруэнтно .

Доказано, что для удвоения шара достаточно пяти частей, но четырёх недостаточно.

Верен также более сильный вариант парадокса :

Любые два ораниченных подмножества трёхёхерного евклидова пространства н неiserю.

Ввиду того, что вывод этой теоремы может показаться неправдоподобным, она иногда используется как довод против принятия аксиомы выбора , которая существенно используется при построении такого разбиения. Принятие подходящей альтернативной аксио deja позволяет доказать невоззожность эакатарав раззаза даарав пț разза да эа оарав ракава разза да эарава ра ра „

Удвоение шара, хотя и кажется весьма подозрительным с точки зрения повседневной интуиции (в самом деле, нельзя же из одного апельсина сделать два при помощи одного только ножа), тем не менее не является парадоксом в логическом смысле этого слова, поскольку не приводит к логическому противоречию наподобие того, как к логическому противоречию приводит так называемый парадокс брадоб брадобре противоречию .

Istorie

Парадокс был открыт в 1926 году Стефаном Банахом и Альфредом Тарским . Очень похож на более ранний парадокс Хаусдорфа , ​​и его доказательство основано на той той. Хаусдорф показал, что подобное сделать нельзя на двумерной сфере, и, следовательно, в трёхмерном пространстве, и парадокс Банаха — Тарского даёт этому наглядную иллюстрацию.

Note

Разделяя шар на конечное число частей, мы интуитивно ожидаем, что, складывая эти части вместе, можно получить только сплошные фигуры, объём которых равен объёму исходного шара. Однако это справедливо только в случае, когда шар делится на части, имеющие объём.

The essence of the paradox lies in the fact that in three-dimensional space there are non-measurable sets that do not have volume, if by volume we mean something that has the property of additivity , and we assume that the volumes of two congruent sets coincide.

Очевидно, что «куски» в разбиении Банаха — Тарского не могут быть измеримыми (и невозможно осуществить такое разбиение какими-либо средствами на практике).

Для плоского круга аналогичное свойство неверно. Более того, Банах показал, что на плоскости понятие площади может быть продолжено на все ограниченные множества как конечно-аддитивная мера , инвариантная относительно движений; в частности, любое множество, равносоставленное кругу, имеет ту же площадь.

Тем не менее некоторые парадоксальные разбиения возможны и на плоскости: круг можно разбить на конечное число частей и составить из них квадрат равной площади [1] [2] ( квадратура круга Тарского ).

Note

  1. Miklos Laczkovich: «Echidecomposability and discrepancy: a solution to Tarski's circle squaring problem», Crelle's Journal of Reine and Angewandte Mathematik 404 (1990) pp. 77-117.
  2. Miklos Laczkovich: „Descompoziții paradoxale: un studiu al rezultatelor recente”. Primul Congres European de Matematică, vol. II (Paris, 1992), p. 159-184, Prog. Math., 120, Birkh.User, Basel, 1994.

Literatură