Polarizare

Versiunea actuală a paginii nu a fost încă examinată de colaboratori experimentați și poate diferi semnificativ de versiunea revizuită pe 4 mai 2021; verificările necesită 9 modificări .

Polarizarea [1] ( vector de polarizare ) este o mărime fizică vectorială egală cu momentul dipol al unei unități de volum a unei substanțe care apare în timpul polarizării acesteia, o caracteristică cantitativă a polarizării dielectrice [2] .

Notat cu litera , în Sistemul Internațional de Unități (SI) se măsoară în C / m 2 .

Definiție

Polarizarea este definită ca momentul dipolului electric pe unitate de volum:

,

unde este momentul dipol al celui de-al- lea atom individual, este numărul de atomi din volum și este momentul dipol al tuturor acestor atomi.

În cazul unui mediu neomogen, polarizarea se exprimă ca

,

unde este momentul de dipol total al atomilor din volum și este o funcție a coordonatelor.

Natura fizică

Polarizarea dielectrică este cauzată de o deplasare locală a sarcinilor în moleculele unei substanțe într-un câmp electric extern, în comparație cu locația lor în absența unui câmp. La nivel microscopic, motivul acestei schimbări poate fi deplasarea învelișului de electroni în raport cu nucleul atomului sau reorientarea moleculelor care au propriul moment dipol .

Ca urmare, în dielectric apar încălcări locale ale neutralității electrice, adică apare așa-numita sarcină „legată” - volumetrică ( , simbolul b din engleză bound , C/m 3 ) sau suprafață ( , C/m 2 ) . Densitatea de încărcare într-un anumit punct din spațiu este suma densităților „terțului” (altfel numit „free” , din engleză free ) și asociată :. O sarcină legată apare în același loc în care există o sarcină terță parte, precum și în locurile de neomogenitate ale dielectricului și la limitele acestuia. În total, pe întregul dielectric, sarcina legată este întotdeauna zero.   

Densitatea de volum a sarcinii legate este exprimată în termeni de divergență de polarizare :

.

Densitatea de suprafață a sarcinii legate la interfața dielectric-vid se găsește prin componenta de polarizare normală la suprafață:

,

unde  este vectorul unitar al normalei la suprafață.

Puteți introduce vectorul inducției electrice , care este convenabil atunci când descrieți câmpul electric într-un mediu continuu:

(SI) (GHS)

La scrierea ecuațiilor electrodinamicii, este necesar să se facă distincția între tipurile menționate de densitate de sarcină. De exemplu, una dintre ecuațiile lui Maxwell arată exact ca , iar pictograma f poate fi eliminată fie pentru vid, fie dacă se prevede că în acest context sarcina externă este desemnată fără un indice.

Vectorul de polarizare poate caracteriza atât polarizarea indusă, cât și cea spontană - adică poate fi folosit pentru a descrie starea de polarizare atât a dielectricilor obișnuiți, cât și a feroelectricilor .

Legătura cu câmpul electric

Practic, relația dintre polarizare și câmpul electric care a cauzat polarizarea este liniară și anume:

(în sistemul SI ) (în sistemul CGS ),

unde este susceptibilitatea dielectrică . În cazul unui material anizotrop, relația dintre polarizare și câmp este dată prin tensorul de polarizabilitate :

.

Anumite substanțe pot fi polarizate în absența unui câmp electric. Astfel de substanțe includ piroelectrice  - substanțe cristaline cu polarizare spontană și electreți  - substanțe amorfe în care polarizarea indusă de câmp poate persista mult timp.

Cazul câmpului variabil

În cazul unui câmp electric alternativ, mediul poate răspunde la o modificare a câmpului cu o anumită întârziere. În acest caz, polarizarea la un moment dat depinde de intensitatea câmpului electric aplicat în momentele anterioare. În astfel de cazuri, se vorbește despre dispersia în timp și seamănă relația dintre polarizare și câmpul electromagnetic

.

Imaginile Fourier ale polarizării și intensității câmpului electric în acest caz sunt legate printr-o relație liniară: , unde

.

Dacă câmpul electromagnetic este neomogen în spațiu, ca, de exemplu, în cazul propagării undelor electromagnetice , și interacționează cu excitații în materie care au o lungime de undă de ordinul undei electromagnetice, atunci valoarea polarizării la un anumit punct în spațiul depinde de valoarea intensității câmpului electric în punctele învecinate din spațiu. În astfel de cazuri, se vorbește de dispersie spațială..

.

În câmpurile electrice puternice, relația dintre polarizare și câmpul electric poate diferi de cea liniară. Fenomenele care apar în acest caz sunt studiate, de exemplu, în optica neliniară .

Vezi și

Note

  1. GOST R 52002-2003 http://www.gostrf.com/normadata/1/4294816/4294816193.pdf Arhivat 10 mai 2021 la Wayback Machine
  2. Sivukhin D.V. Curs general de fizică. - M . : Nauka , 1977. - T. III. Electricitate. — 688 p. - pagina 61