Virusul SIDA

Virusul SIDA

Secțiune transversală stilizată a HIV [1]
clasificare stiintifica
Grup:Viruși [2]Tărâm:RiboviriaRegatul:ParanaviraeTip de:ArtverviriricotaClasă:RevtraviriceteOrdin:OrterviralesFamilie:RetrovirusuriSubfamilie:OrthoretrovirinaeGen:LentivirusuriGrup:Primat Lentivirus Group
Denumire științifică internațională
Primat Lentivirus Group
feluri
  • Human immunodeficiency virus 1 (HIV-1) — Вирус иммунодефицита человека 1 (ВИЧ-1)
  • Human immunodeficiency virus 2 (HIV-2) — Вирус иммунодефицита человека 2 (ВИЧ-2)
Grupul Baltimore
VI: VIRUS SSRNA-RT

Ви́рус иммунодефици́та челове́ка (ВИЧ) — ретровирус из рода лентивирусов, вызывающий медленно прогрессирующее[3] заболевание — ВИЧ-инфекцию[4][5].

Вирус поражает клетки иммунной системы, имеющие на своей поверхности рецепторы CD4: Т-хелперы, моноциты, макрофаги, клетки Лангерганса[6], дендритные клетки, клетки микроглии[7]. В результате работа иммунной системы угнетается и развивается синдром приобретённого иммунного дефицита (СПИД), организм больного теряет возможность защищаться от инфекций и опухолей, возникают вторичные оппортунистические заболевания, которые не характерны для людей с нормальным иммунным статусом[8][9][10][11][12][13].

Лечение ВИЧ-инфекции заключается в приёме антиретровирусной терапии , которая позволяет ВИЧ-положительным людям вести нормальный образ жизни, а её качество и продолжительность не отличается от таковых у ВИЧ-отрицательных людей [14] [15] . При приёме указанной терапии человек достигает нулевой вирусной нагрузки, вследствие чего не способен передать инфекцию другим людям, в том числе при незащищённом половом акте [16] [17] [18] [19] , также терапия позволяет ВИЧ-положительным родителям естественным путём зачать и родить здорового ребёнка [20] . В отсутствие приёёёа тераiser пoроярессирующая вич - ianuarie

В 1981 году появились первые три научные статьи о необычных случаях развития пневмоцистной пневмонии и саркомы Капоши у гомосексуальных мужчин[23][24]. До этого оба заболевания встречались редко и были характерны для совершенно разных групп пациентов: саркомой Капоши в основном болели пожилые мужчины средиземноморского происхождения, а пневмоцистной пневмонией — пациенты с лейкозом после интенсивной химиотерапии. Появление этих заболеваний, свидетельствующих о тяжёлом иммунодефицитном состоянии, у молодых людей, не входящих в соответствующие группы риска, наблюдалось впервые[24]. Затем обнаружили такие же симптомы среди наркопотребителей, больных гемофилией A[25], и гаитян[26][27]. Наиболее значимым было обнаружение снижения соотношения CD4+/CD8+-клеток в результате относительного и/или абсолютного уменьшения количества CD4+-лимфоцитов в сочетании с увеличением количества CD8+-лимфоцитов[24][28][29].

В июле 1982 года для обозначения этого состояния был предложен термин синдром приобретённого иммунного дефицита (СПИД, AIDS)[30]. В сентябре 1982 года СПИДу было дано полноценное определение как нозологической форме на основании наблюдения ряда оппортунистических инфекций у четырёх групп пациентов, указанных выше[24][31].

В период с 1981 по 1984 год вышло несколько работ, связывающих вероятность развития СПИДа с анальным сексом или с влиянием наркотиков[32][33][34][35][36][37]. Параллельно велись работы над гипотезой о возможной инфекционной природе СПИДа.

În aceleași lucrări, virusul izolat de la pacienții cu SIDA a fost propagat cu succes pentru prima dată în limfocite T cultivate.

В 1986 году было доказано, что вирусы, открытые в 1983 французскими и американскими исследователями, генетически идентичны. Первоначальные названия вирусов были упразднены и предложено одно общее название — вирус иммунодефицита человека[40]. В 2008 году Люк Монтанье и Франсуаза Барр-Синусси были удостоены Нобелевской премии в области физиологии или медицины «за открытие вируса иммунодефицита человека»[41].

Вирус может передаваться через прямой контакт повреждённой или неповреждённой слизистой оболочки или повреждённой кожи здорового человека с биологическими жидкостями заражённого человека: кровью, предсеменной жидкостью (выделяющейся на протяжении всего полового акта), спермой, секретом влагалища, грудным молоком. Передача вируса может происходить при незащищённом анальном, вагинальном или оральном сексе[42][43].

Интактная, неповреждённая кожа является эффективным барьером для инфекции, так как в коже отсутствуют клетки, которые могут быть заражены ВИЧ. Для успешной инфекции требуется прямой контакт с кровеносной системой или с мембранами клеток слизистых оболочек. Слизистые оболочки половых органов и прямой кишки часто получают незначительные повреждения при половом акте, через которые вирус может проникать в кровь. Такие повреждения чаще возникают при наличии заболеваний, передающихся половым путём, например, в случае герпеса. Поэтому особенно опасной формой полового акта для принимающего партнёра является незащищённый анальный секс, так как при этой форме возникает наибольшее число мелких и крупных повреждений[44][45]. С другой стороны, заражение возможно и в случае неповреждённой слизистой оболочки, так как слизистая содержит значительное количество дендритных клеток (в том числе, клеток Лангерганса), которые могут играть роль «переносчиков» вирусных частиц в лимфатические узлы.

Передача вируса происходит с большей вероятностью при использовании заражённых игл и шприцев (особенно потребителями инъекционных наркотиков), а также при переливании крови (в случае нарушения медицинским персоналом установленных процедур проверки донорской крови)[46]. Также передача вируса может произойти между матерью и ребёнком во время беременности, родов (заражение через кровь матери)[47][48] и при грудном вскармливании (причём как от заражённой матери к здоровому ребёнку через грудное молоко, так и от заражённого ребёнка к здоровой матери через покусывание груди во время кормления)[49].

Вирус не передаётся воздушно-капельным путём, бытовым путём, при соприкосновении с неповреждённой кожей, через укусы большинства кровососущих насекомых[50] (исключение составляют мухи-жигалки), слёзы[51] и слюну (из-за того, что концентрация вирионов ВИЧ в этих жидкостях ниже инфицирующей дозы, а также из-за того, что слюна — агрессивная среда, разрушающая своими ферментами вирионы ВИЧ)[51].

Вирус не стоек во внешней среде, быстро погибает под прямыми солнечными лучами; при температуре выше 57⁰C, и практически моментально при 100⁰C; так же вирус очень чувствителен к кислотности (он может выжить только при pH от 7 до 8), щелочным и солёным средам[52].

В течении болезни выделяют три стадии: острую инфекцию, латентный период и терминальную стадию (СПИД) (см. иллюстрацию). В ходе развития ВИЧ-инфекции у одного и того же человека в результате мутаций возникают новые штаммы вируса, которые различаются по скорости воспроизведения и способности инфицировать[8][9]. Размножившись, вирусные частицы высвобождаются из поражённых клеток и внедряются в новые — цикл развития повторяется. Инфицированные вирусом Т-хелперы постепенно гибнут из-за разрушения вирусом, апоптоза или уничтожения Т-киллерами. В процессе развития ВИЧ-инфекции количество Т-хелперов (CD4+-клеток) снижается настолько, что организм уже не может противостоять возбудителям оппортунистических инфекций, которые неопасны или мало опасны для здоровых людей с нормально функционирующей иммунной системой. На терминальной стадии (СПИД) ослабленный организм поражают бактериальные, грибковые, вирусные и протозойные инфекции, а также опухоли[11][12][13]. В отсутствие антиретровирусной терапии смерть пациента наступает не в результате размножения вируса в CD4+-клетках, а по причине развития оппортунистических заболеваний (вторичных по отношению к ВИЧ-инфекции).

По данным на 2011 год, в мире за всё время ВИЧ-инфекцией заболели 60 миллионов человек, из них: 25 миллионов умерли, а 35 миллионов живут с ВИЧ-инфекцией[54]. Более двух третей из них проживают в Африке к югу от пустыни Сахара[55]. Эпидемия началась здесь в конце 1970-х — начале 1980-х. Затем эпидемия перекинулась в США, Западную Европу и страны Южной Африки. Сегодня, за исключением стран Африки, быстрее всего вирус распространяется в Центральной Азии и Восточной Европе (в том числе в России). Эпидемическая ситуация в этих регионах сдерживалась до конца 1990-х, затем с 1999 по 2002 годы количество инфицированных почти утроилось — в основном за счёт инъекционных наркоманов. Значительно ниже среднего ВИЧ-инфекция распространена в Восточной Азии, Северной Африке и на Ближнем Востоке. В масштабе планеты эпидемическая ситуация стабилизировалась, количество новых случаев ВИЧ-инфекции снизилось с 3,5 миллионов в 1997 году до 2,7 миллионов в 2007 году[55]. По данным на конец 2016 года, в России 848 тысяч человек живут с ВИЧ-инфекцией, за период с 1986 по 2016 год умерло от разных причин 220 тысяч ВИЧ-инфицированных граждан России[56] (подробнее см. Статистика заболеваемости и смертности по России).

Анализ крови позволяет обнаружить антитела к белкам вируса (ИФА), реакцию антител на белки вируса (вестерн-блот), РНК вируса (ОТ-ПЦР)[57]. Определение вирусной нагрузки (подсчёт количества копий РНК вируса в миллилитре плазмы крови) позволяет судить о стадии заболевания и эффективности лечения[58][59].

Обязательная проверка донорской крови в развитых странах в значительной степени сократила возможность передачи вируса при её использовании. Тестирование на ВИЧ беременных женщин позволяет своевременно начать приём лекарств и родить здорового ребёнка.

Существует мнение, что принудительное тестирование населения бесперспективно с точки зрения сдерживания эпидемии[60] и нарушает права человека[61]. В России проведение теста без согласия человека является незаконным[62], однако существуют ситуации, в которых предоставление результатов тестирования на ВИЧ является обязательным, но не насильственным (донорство, трудоустройство медицинских работников, для иностранных граждан, получающих разрешение на пребывание в РФ, в местах лишения свободы при наличии клинических показаний)[63].

Tratament

На июль 2020 года известно о трёх случаях излечения от вируса. В медицинской литературе они фигурируют под прозвищами «Берлинский», «Лондонский» и «Сан-Паулский» пациенты[64][65].

Из 35 миллионов человек, живущих с ВИЧ-инфекцией, часть остаётся в живых благодаря антиретровирусной терапии. В случае отсутствия антиретровирусной терапии ВИЧ-инфекции, смерть наступает в среднем через 9—11 лет после заражения[8][66]. При проведении антиретровирусной терапии продолжительность жизни пациента составляет 70—80 лет[67][68][69]. Антиретровирусные препараты мешают ВИЧ размножаться в клетках иммунной системы человека, блокируя внедрение вирионов в клетки и нарушая на разных этапах процесс сборки новых вирионов. Своевременно начатое лечение антиретровирусными препаратами в сотни раз снижает риск развития СПИДа и последующей смерти[70][71][72]. Антиретровирусные препараты у части пациентов вызывают побочные эффекты, в некоторых случаях даже требующие сменить схему лечения (набор принимаемых лекарств).

Терапию назначают при снижении иммунитета и/или высокой вирусной нагрузке. Если число CD4+-лимфоцитов велико и вирусная нагрузка низкая, терапию не назначают. После назначения терапии лекарства нужно принимать ежедневно в одно и то же время и пожизненно, что создаёт неудобства для пациентов. Кроме того, следует учитывать высокую стоимость месячного курса лекарств. В 2014 году необходимые лекарства получали менее половины из 9,5 млн человек, нуждающихся в противовирусной терапии[73].

Также все беременные женщины с ВИЧ-инфекцией должны начинать незамедлительную ВААРТ для предотвращения передачи ВИЧ плоду[74].

Согласно рекомендациям ВОЗ, ВААРТ следует незамедлительно начинать всем ВИЧ-инфицированным детям до полутора лет[75]. Начало терапии у детей, получивших ВИЧ от матери, в течение 3 месяцев после родов снижает смертность на 75 %[76]. В отсутствие лечения треть ВИЧ-инфицированных детей умирает в течение первого года жизни и 50 % — в течение второго года. Если диагностика ВИЧ невозможна, лечение следует начинать в возрасте 9 месяцев, либо ранее, в случае появления симптомов[77].

По состоянию на февраль 2016 года было объявлено, что группе немецких учёных удалось полностью удалить тип ВИЧ-1 из живых клеток. Испытания проводились на клетках человека, вживлённых подопытным мышам. Испытания на людях должны проводиться в ближайшее время[78][79][80].

В 2018 году Администрацией по контролю над продуктами и лекарствами (FDA) был одобрен ибализумаб (ibalizumab-uiyk) для применения в терапии пациентов с мультирезистентным ВИЧ-1. Препарат представляет собой моноклональное антитело, которое связывается с CD4 рецепторами T-клеток и подавляет процесс проникновения вируса в клетку человека. Ибализумаб может применяться в терапии с другими антиретровирусными лекарствами. По результатам клинических исследований с участием 40 пациентов, ранее прошедших лечение более чем 10 различными антиретровирусными агентами, вирусная нагрузка снизилась у большинства испытуемых через одну неделю после введения первой дозы препарата. Через 24 недели терапии вирусологическая супрессия была достигнута у 43 % участников клинических испытаний[81].

ВИЧ в 2019 году вносили в список десяти основных проблем здравоохранения, которые требуют особого внимания ВОЗ[82].

Clasificare

Вирус иммунодефицита человека относят к семейству ретровирусов (Retroviridae), роду лентивирусов (Lentivirus). Название Lentivirus происходит от латинского слова lente — медленный. Такое название отражает одну из особенностей вирусов этой группы, а именно — медленную и неодинаковую скорость развития инфекционного процесса в макроорганизме. Для лентивирусов также характерен длительный инкубационный период[83].

Для вируса иммунодефицита человека характерна высокая частота генетических изменений, возникающих в процессе самовоспроизведения. Частота возникновения ошибок у ВИЧ составляет 10−3 — 10−4 ошибок на геном на цикл репликации, что на несколько порядков больше аналогичной величины у эукариот. Размер генома ВИЧ составляет примерно 104 нуклеотидов. Из этого следует, что практически каждый дочерний геном хотя бы на один нуклеотид отличается от своего предшественника. В современной классификации различают два основных вида ВИЧ — ВИЧ-1 и ВИЧ-2. Предполагается, что эти вирусы возникли в результате независимой передачи людям SIV (вируса иммунодефицита обезьян) от шимпанзе и мангабеев соответственно[84].

д. [8] [85] [86]

ВИЧ-1 описан в 1983 году и является наиболее распространённым и патогенным видом ВИЧ[87]. Глобальная эпидемия ВИЧ-инфекции главным образом обусловлена распространением ВИЧ-1. В подавляющем большинстве случаев, если не оговорено иначе, под ВИЧ подразумевают ВИЧ-1[88].

Вид ВИЧ-1 классифицируют на главную группу М и несколько побочных групп. Считается, что группы M, N, O, P образовались в результате независимых случаев передачи SIV от обезьяны к человеку, и последующей мутации вируса до ВИЧ[89].

ВИЧ-2 идентифицирован в 1986 году[103], генетически очень близок к T-лимфотропному вирусу SIV, и в меньшей степени к вирусу ВИЧ-1. Геномы ВИЧ-1 и ВИЧ-2 имеют гомологию консервативных генов gag и pol около 60 %, и до 45 % для генов белков оболочки[104]. По состоянию на 2010 год, описано 8 групп ВИЧ-2, лишь группы A и B являются эпидемическими. Вирусы группы А распространены в Западной Африке, Анголе, Мозамбик, Бразилии, Индии и мало распространены в США и Европе[105][106]. Вирусы группы В распространены в Западной Африке[107][108].

Вирионы ВИЧ имеют вид сферических частиц, диаметр которых составляет около 100—120 нанометров[109]. Это приблизительно в 60 раз меньше диаметра эритроцита[110]. В состав зрелых вирионов входит несколько тысяч белковых молекул различных типов.

Капсид зрелого вириона, состоящий из примерно 2000 молекул белка р24, имеет форму усечённого конуса[111].

Внутри капсида находится белково-нуклеиновый комплекс: две нити вирусной РНК, прочно связанные с белком нуклеокапсида p7, ферменты (обратная транскриптаза, протеаза, интеграза)[111]. С капсидом также ассоциированы белки Nef и Vif (7—20 молекул Vif на вирион). Внутри вириона (и, вероятнее всего, за пределами капсида) обнаружен белок Vpr[42]:8-11. Кроме того, с капсидом ВИЧ-1 (но не ВИЧ-2) связаны около 200 копий клеточного фермента пептидилпролилизомеразы A (циклофилин А), необходимого для сборки вириона[112].

Капсид окружён оболочкой, образованной примерно 2000 молекул матриксного белка p17[111]. Матриксная оболочка, в свою очередь, окружена двуслойной липидной мембраной, являющейся наружной оболочкой вируса. Она образована молекулами фосфолипидов, захваченными вирусом во время его отпочковывания от клетки, в которой он сформировался[113]. В липидную мембрану встроены 72 гликопротеиновых комплекса Env, каждый из которых образован тремя молекулами трансмембранного гликопротеина gp41 (TM), служащего «якорем» комплекса, и тремя молекулами поверхностного гликопротеина gp120 (SU)[112]. С помощью белка gp120 вирус присоединяется к рецептору CD4 и корецептору, находящимся на поверхности Т-лимфоцитов человека. Стехиометрическое соотношение p24:gp120 в вирионе составляет 60—100:1[42]:11. При формировании наружной оболочки вируса также происходит захват некоторого количества мембранных белков клетки, в том числе человеческих лейкоцитарных антигенов (HLA) классов I и II и молекул адгезии[111][114].

Белки вириона интенсивно изучаются, поскольку являются мишенями разрабатываемых лекарств и вакцины против ВИЧ.

Функции важных структурных белков ВИЧ-1[111][114]

Reducere Descriere Funcții
gp41 (TM, transmembrane) Трансмембранный гликопротеин массой 41 кДа Располагается во внешнем слое липидной мембраны, играет роль «якоря», удерживающего молекулы белка gp120
gp120 (SU, surface) Гликопротеин массой 120 кДа Наружный белок вириона. Нековалентно связан с трансмембранным белком gp41. С одной молекулой gp41 связаны 3—5 молекул gp120. Способен связывать рецептор CD4. Играет важную роль в процессе проникновения вируса в клетку.
p24 (CA, capsid) Белок массой 24 кДа Образует капсид вируса
p17 (MA, matrix) Матриксный белок массой 17 кДа Около двух тысяч молекул этого белка образуют слой толщиной 5—7 нм, располагающийся между внешней оболочкой и капсидом вируса.
p7 (NC, nucleocapsid) Нуклеокапсидный белок массой 7 кДа Входит в состав капсида вируса. Образует комплекс с вирусной РНК.

Генетический материал ВИЧ представлен двумя копиями положительно-смысловой (+)РНК[112]. Геном ВИЧ-1 имеет длину 9000 нуклеотидов. Концы генома представлены длинными концевыми повторами, которые управляют продукцией новых вирусов и могут активироваться и белками вируса, и белками инфицированной клетки.

9 генов ВИЧ-1 кодируют, по крайней мере, 15 белков[115]. Ген pol кодирует ферменты: обратную транскриптазу (RT), интегразу (IN) и протеазу (PR). Ген gag кодирует полипротеин Gag/p55, расщепляемый вирусной протеазой до структурных белков p6, p7, p17, p24. Ген env кодирует белок gp160, расщепляемый клеточной эндопротеазой фурином на структурные белки gp41 и gp120[42]:8-12. Другие шесть генов — tat, rev, nef, vif, vpr, vpu (vpx у ВИЧ-2) — кодируют белки, отвечающие за способность ВИЧ-1 инфицировать клетки и производить новые копии вируса. Репликация ВИЧ-1 in vitro возможна без генов nef, vif, vpr, vpu, однако их продукты необходимы для полноценной инфекции in vivo[116][117][118].

Полипротеин-предшественник Gag/p55 синтезируется с полноразмерной геномной РНК (которая в данном случае служит в качестве мРНК) в процессе стандартной кэп-зависимой трансляции, но возможна и IRES-зависимая трансляция. Предшественники функциональных белков располагаются в составе полипротеина Gag/p55 в следующем порядке: p17…p24…p2…p7…p1…p6[42]:8 (р1 и р2 — соединительные пептиды; другие продукты расщепления Gag/p55 описаны выше). Нерасщеплённый протеазой Gag/p55 содержит три основных домена: домен мембранной локализации (М, membrane targeting), домен взаимодействия (I, interaction) и «поздний» домен (L, late). Домен М, расположенный внутри области p17/МА, миристилируется (присоединяются остатки миристиновой кислоты) и направляет Gag/p55 к плазматической мембране. Домен I, находящийся внутри области p7NC (NC, nucleocapsid), отвечает за межмолекулярные взаимодействия отдельных мономеров Gag/p55. Домен L, также локализованный в области p7NC, опосредует отпочковывание вирионов от плазматической мембраны; в этом процессе участвует также р6 область полипротеина Gag/p55[42]:8[119].

Двумя важными функциями белка Vpu являются: 1) разрушение клеточного рецептора CD4 в эндоплазматическом ретикулуме путём привлечения убиквитинлигазных комплексов и 2) стимуляция выделения дочерних вирионов из клетки путём инактивации интерферон-индуцируемого трансмембранного белка CD317/BST-2, получившего также название «tetherin» за его способность подавлять выделение вновь образовавшихся дочерних вирионов посредством их удержания на поверхности клетки[116][117][120][121][122][123].

Белок Vpr необходим для репликации вируса в неделящихся клетках, в том числе макрофагах. Этот белок, наряду с другими клеточными и вирусными белками, активирует транскрипцию с использованием длинных концевых повторов генома ВИЧ в качестве промоторов. Белок Vpr играет важную роль в переносе вирусной ДНК в ядро и вызывает задержку деления клетки в периоде G2[124].

Белок Vif играет важную роль в поддержке репликации вируса. Vif индуцирует убиквитинилирование и деградацию клеточного антивирусного белка APOBEC3G, который вызывает деаминирование ДНК, приводящее к мутационным заменам G на A в вирусной ДНК, синтезируемой в ходе обратной транскрипции. Штаммы, лишённые Vif, не реплицируются в CD4+-лимфоцитах, некоторых линиях T-лимфоцитов и макрофагах. Эти штаммы способны проникать в клетки-мишени и начинать обратную транскрипцию, однако синтез вирусной ДНК остаётся незавершённым[124].

Белок Nef выполняет несколько функций. Он подавляет экспрессию молекул CD4 и HLA классов I и II на поверхности инфицированных клеток, и тем самым позволяет вирусу ускользать от атаки цитотоксических T-лимфоцитов и от распознавания CD4+-лимфоцитами. Белок Nef может также угнетать активацию T-лимфоцитов, связывая различные белки-компоненты систем внутриклеточной передачи сигнала[124].

У инфицированных вирусом иммунодефицита макак-резусов активная репликация вируса и прогрессирование болезни возможны только при интактном гене nef. Делеции гена nef были обнаружены в штаммах ВИЧ, выделенных у группы австралийцев с длительным непрогрессирующим течением инфекции[125]. Однако у части из них со временем появились признаки прогрессирования инфекции, в том числе снижение числа CD4+-лимфоцитов. Таким образом, хотя делеции гена nef и могут замедлять репликацию вируса, это не гарантирует полной невозможности прогрессирования заболевания[126].

Регуляторные белки Tat (транс-активатор) и Rev накапливаются в ядре клетки и связывают определённые участки вирусной РНК. Белок Tat имеет молекулярную массу около 14-15 кДа, связывает вторичную структуру геномной РНК вблизи 5'-нетранслируемой области[124][127], активирует обратную транскрипцию геномной РНК ВИЧ, синтез вирусных мРНК, необходим для репликации вируса почти во всех культурах клеток, регулирует выход вирионов из заражённых клеток[124][127], нуждается в клеточном кофакторе — циклине T1. Белок Rev регулирует экспрессию белков вириона, связывает мРНК гена env в области RRE (англ. Rev response element) интрона, разделяющего экзоны генов Tat и Rev[124][127].

Белки Tat и Rev стимулируют транскрипцию провирусной ДНК и транспорт РНК из ядра в цитоплазму, а также необходимы для трансляции. Белок Rev обеспечивает также транспорт компонентов вируса из ядра и переключение синтеза регуляторных белков вируса на синтез структурных[124].

После попадания вирионов ВИЧ на поверхность и внутрь организма, вирусные частицы оказываются в различных по своей агрессивности биологических жидкостях. Слюна и желудочный сок содержат ферменты, которые в бо́льшей степени разрушают вирионы ВИЧ, чем другие биологические жидкости (это не относится к младенцам первых месяцев жизни, у которых ещё не вырабатываются соответствующие ферменты пищеварения, из-за чего младенцы могут быть заражены через грудное молоко). Вирионы ВИЧ проникают в кровеносную и лимфатическую систему организма и перемещаются по организму в потоке крови и лимфы. Оказавшись рядом с CD4-клеткой, вирионы ВИЧ присоединяются к рецептору CD4 на её плазматической мембране[128].

Механизм слияния вириона ВИЧ
и плазматической мембраны
Т-лимфоцита человека

Вирусный гликопротеин gp120 прочно связывает рецептор CD4. В результате такого взаимодействия gp120 претерпевает конформационные изменения, которые позволяют ему также связать молекулу корецептора CXCR4 или CCR5 (экспрессируемых на поверхности Т-лимфоцитов, макрофагов, дендритных клеток и микроглии)[129][130]. В зависимости от способности связывать эти корецепторы, ВИЧ классифицируют на R5-тропные (связывают только корецептор CCR5), X4-тропные (связывают только корецептор CXCR4) и R5X4-тропные (могут взаимодействовать с обоими корецепторами) варианты[129]. При заражении, в основном, передаются R5-тропные и R5X4-тропные варианты[131]. Препараты, блокирующие корецепторы, могут быть эффективны против ВИЧ[132].

После описанных событий вирусный белок gp41 проникает в мембрану клетки и подвергается значительным конформационным изменениям, вследствие которых мембрана клетки и мембрана вириона ВИЧ сближаются друг с другом и затем сливаются. Вирусный белок gp41 очень важен для слияния мембран, поэтому его рассматривают в качестве мишени для разработки противовирусных препаратов.

После слияния мембран содержимое вириона проникает внутрь клетки. Внутри клетки вирусная РНК высвобождается из капсида. Затем под действием обратной транскриптазы происходит обратная транскрипция — процесс синтеза ДНК на основании информации в одноцепочечной геномной РНК вируса[133]. Большая часть лекарственных препаратов, одобренных для применения при ВИЧ-инфекции, направлена на нарушение работы обратной транскриптазы[8].

После завершения обратной транскрипции в CD4+-лимфоците вирусный геном представлен невстроенной ДНК. Для встраивания вирусной ДНК в геном клетки-хозяина и для образования новых вирусов необходима активация T-лимфоцитов. Активация CD4+-лимфоцитов происходит при их контакте с антигенпредставляющими клетками в лимфоидной ткани. Наличие вирусов на поверхности фолликулярных дендритных клеток и присутствие провоспалительных цитокинов (ИЛ-1, ИЛ-6 и ФНОα) способствуют размножению ВИЧ в инфицированных клетках. Именно поэтому лимфоидная ткань служит самой благоприятной средой для репликации ВИЧ[134].

Синтезированная вирусная ДНК транспортируется внутрь ядра клетки в составе пре-интеграционного комплекса, в который также входят белки ВИЧ p17/MA, Nef и интеграза[135]. Далее вирусная ДНК встраивается в хромосому активированного T-лимфоцита под действием интегразы. Несколько препаратов, ингибирующих интегразу, широко используются в современной комплексной антиретровирусной терапии. Вирусная ДНК, встроившаяся в хромосому клетки, называется провирусом[8].

В ядре клеточная РНК-полимераза синтезирует предшественник вирусных информационных РНК (мРНК), длина которого равна длине геномной РНК ВИЧ-1. Этот предшественник мРНК подвергается 5'-концевому кэпированию и 3'-концевому полиаденилированию. Кроме того, предшественник мРНК подвергается сплайсингу, в результате которого образуются более 40 разных мРНК, которые можно разделить на 3 класса[136]:

  1. несплайсированная РНК длиной около 9.3 kb — далее используется в качестве мРНК для синтеза белков Gag и Gag-Pol, а также в качестве геномной РНК;
  2. не полностью сплайсированные РНК размером около 4 kb — используются как мРНК для синтеза белков Vif, Vpr, Tat, Vpu и Env;
  3. полностью сплайсированные РНК размером около 2 kb — используются как мРНК для синтеза белков Vpr, Tat, Rev и Nef.

На ранней стадии экспрессии генов, в отсутствие белка Rev, несплайсированная и не полностью сплайсированные РНК ВИЧ-1 нестабильны и быстро разрушаются в ядре. В то же время полностью сплайсированные мРНК ВИЧ-1 являются стабильными и транспортируются из ядра в цитоплазму[136]. В цитоплазме с помощью рибосом происходит процесс трансляции — биосинтез белка из аминокислот по заданной матрице на основе генетической информации, содержащейся в мРНК. Синтезированный в цитоплазме белок Rev транспортируется в ядро, где связывается с областью RRE несплайсированной и не полностью сплайсированных РНК, что стабилизирует эти РНК. Кроме того, Rev взаимодействует с клеточным белком CRM1 (экспортин 1), и это взаимодействие стимулирует транспорт несплайсированной и не полностью сплайсированных РНК из ядра в цитоплазму, где происходит синтез закодированных в них белков[136].

Геномная РНК вируса, а также вирусные белки транспортируются к местам сборки вирионов — к мембране. Вирионы первоначально формируются из полипротеинов-предшественников структурных белков и ферментов и на этой стадии не являются инфекционными. В ходе созревания вирусной частицы вирусная протеаза расщепляет белки-предшественники до функциональных компонентов[8]. Несколько одобренных противовирусных препаратов ингибируют работу протеазы и препятствуют формированию зрелых вирионов[8].

Новые вирусные частицы отпочковываются от поверхности клетки, захватывая часть её мембраны, и выходят в кровяное русло, а клетка хозяина, несущая рецептор CD4, погибает[137][138]. Недавние исследования показали, что процесс отпочковывания вирионов может быть более сложным, чем считалось ранее. Так было обнаружено, что благодаря взаимодействию белка Gag с компонентами клетки вирионы накапливаются в особых внутриклеточных мультивезикулярных тельцах, которые обычно служат для экспорта белков. Таким образом вирусные частицы высвобождаются из клетки, эксплуатируя её собственную систему транспорта макромолекул[8].

Только что выделившийся из заражённого лимфоцита вирион ВИЧ в плазме крови живёт в среднем около 8 часов[128]. Продолжительность полужизни (время, за которое погибает 50 % вирионов ВИЧ) в плазме крови составляет примерно 6 часов[128]. В остальных средах продолжительность полужизни вирионов ВИЧ на порядки меньше[139].

Вирус заселяет органы лимфатической системы , CD4 + -лимфоциты, макрофаги, а также другие клетки: альвеолярные макрофаги лёгких, клетки Лангерганса , фолликулярные дендритные клетки лимфатических узлов , клетки олигодендроглии и астроциты мозга и эпителиальные клетки кишки [140] [141] . В лимфоидной ткани ВИЧ размножается на протяжении всего заболевания, поражая макрофаги, активированные и покоящиеся CD4 + -лимфоциты и фолликулярные дендритные клетки [142] [143] . Количество клеток, содержащих провирусную ДНК, в лимфоидной ткани в 5—10 раз выше, чем среди клеток крови, а репликация ВИЧ в лимфоидной ткани на 1—2 порядка выше, чем в крови. Основным клеточным резервуаром ВИЧ являются CD4 + -Т-лимфоциты иммунологической памяти [1444] ти .

Для активации CD8+-лимфоцитов и образования антиген-специфических цитотоксических T-лимфоцитов необходима презентация пептидного антигена в комплексе с человеческим лейкоцитарным антигеном класса I. Дендритные клетки, необходимые для начала первичных антиген-специфичных реакций, захватывают антигены, перерабатывают и переносят их на свою поверхность, где эти антигены в комплексе с дополнительными стимулирующими молекулами активируют T-лимфоциты. Заражённые клетки часто не выделяют дополнительных стимулирующих молекул и поэтому не способны вызвать активацию достаточного числа B- и T-лимфоцитов, функция которых зависит от дендритных клеток[134].

В 2014 году был предложен метод удаления генома ВИЧ-1 из заражённых клеток при при при помоённых клеток при при помоённых CRISPR/Cas9 . Кроме того, этот метод оказался также эффективным для профилактики заражения неинынковацлинффицлинковац. Описанный подход может привести к разработке способа полного избавления от ВИЧ-инфе [148] -инфе [ .

Origine

Методом молекулярной филогении показано, что вирус иммунодефицита человека образовался в конце XIX или в начале XX века[149][150][151][152][153], скорее всего в 1920-х гг[154].

ВИЧ-1 возник на юге Камеруна в результате эволюции эндемичного вируса иммунодефицита обезьян SIV-cpz, который заражает черномордых шимпанзе ( Pan troglodytes troglodytes ) [155] [156] .

ВИЧ-2 возник на территории Западной Африки (от южного Сенегала до запада Берега Слоновой Кости) в результате эволюции вируса иммунодефицита обезьян SIV-smm, который заражает тёмно-коричневых мангабеев (Cercocebus atys) и узконосых обезьян[158].

Существует доказательство того, что охотники на диких животных (обезьян) или поставщики мяса в Западной и Центральной Африке подвергаются заражению вирусом иммунодефицита обезьян, причём вероятность заражения коррелирует с частотой взаимодействия с обезьянами и их мясом [159] .

Генетические исследования показывают, что последний общий предок ВИЧ-1 группы М существовал около 1910 года[161]. Сторонники этой даты связывают распространение ВИЧ с развитием колониализма в Африке и ростом больших городов. Эти факторы привели к таким социальным изменениям в обществе, как увеличение частоты беспорядочных половых связей, распространение проституции и заболеваний, передающихся половым путём (ЗППП)[162]. ЗППП, такие как сифилис, могут сопровождаться генитальными язвами. Исследования показывают, что вероятность передачи ВИЧ во время вагинального полового акта, достаточно низкая при обычных условиях, может быть увеличена в десятки, если не в сотни раз, если один из партнёров страдает от генитальных язв. О степени распространённости ЗППП в колониальных городах в начале 1900-х можно судить по следующим цифрам: в 1928 году по меньшей мере 45 % жительниц восточного Леопольдвиля (ныне — Киншаса, ранний центр распространения ВИЧ группы М) были проститутками, а в 1933 году около 15 % всех жителей этого же города были заражены одной из форм сифилиса. Ретроспективный анализ показал, что начало эпидемии ВИЧ-инфекции в Киншасе совпало с пиком эпидемии генитальных язв в середине 1930-х годов[162].

Альтернативная точка зрения гласит, что основным фактором, способствовавшим адаптации ВИЧ к людям и его распространению, была небезопасная медицинская практика в Африке в годы после Второй мировой войны, такая как использование нестерильных многоразовых шприцев при массовых вакцинациях, инъекциях антибиотиков и противомалярийных средств[108][163][164].

В результате ретроанализа образцов крови, взятых после Второй мировой войны, зафиксирован самый ранний документальный случай наличия ВИЧ в организме человека, кровь у которого взяли в 1959 году [165] . Вирус, возможно, присутствовал в Соединённых Штатах уже в 1966 году [166] , но подавляющее большинство случаев заражения ВИЧ, идентифицированных за пределами тропической Африки, можно проследить до одного неустановленного человека, который заразился ВИЧ на Гаити , а затем перенёс инфекцию в США около 1969 года [167] .

Описаны случаи устойчивости людей к ВИЧ. Проникновение вируса в клетку иммунной системы связано с его взаимодействием с поверхностным рецептором, белком CCR5. Делеция (утеря участка гена) CCR5-дельта32 приводит к невосприимчивости её носителя к ВИЧ. Предполагается, что эта мутация возникла примерно две с половиной тысячи лет назад и со временем распространилась в Европе. Сейчас к ВИЧ фактически устойчив в среднем 1 % жителей Европы, 10—15 % европейцев имеют частичную сопротивляемость к ВИЧ[168]. 0,1-0,3 % русского населения почти невосприимчивы к ВИЧ[169]. Учёные Ливерпульского университета объясняют распространение мутации гена CCR5 тем, что она усиливает сопротивляемость к бубонной чуме. Эпидемия «чёрной смерти» 1347 года (а в Скандинавии ещё и 1711 года) способствовала увеличению частоты этого генотипа в Европе.

Мутация в гене CCR2 также уменьшает шанс проникновения ВИЧ в клетку и приводит к закидит к зандера. Существует небольшой процент ВИЧ-положительных людей (около 10 %), у которых Соторых Соторых Соторых Существует ВИЧ-положительных людей (около 10 %)

Важный клеточный компонент защиты против ВИЧ — антивирусный белок APOBEC3G, который вызывает деаминирование ДНК, приводящее к мутационным заменам G на A в вирусной ДНК, синтезируемой в ходе обратной транскрипции.

Обнаружено, что одним из главных элементов антивирусной защиты человека и других приматов является белок TRIM5a, способный распознавать капсид вирусных частиц и препятствовать размножению вируса в клетке. TRIM5a человека и шимпанзе несколько отличаются друг от друга и эффективны против разных вирусов: этот белок защищает шимпанзе от ВИЧ и родственных ему вирусов, а человека — от вируса PtERV1[173]. Обезьяны Нового Света, за исключением мирикины, которая имеет химерный ген TRIM5-CypA, устойчивостью к ВИЧ не обладают[174].

Другой важный элемент антивирусной защиты — интерферон-индуцируемый трансмембранный белок CD317/BST-2 (англ. bone marrow stromal antigen 2)[120][121][175]. CD317 — трансмембранный белок 2-го типа с необычной топологией: он имеет трансмембранный домен рядом с N-концом и гликозилфосфатидилинозитол (GPI) на С-конце, между которыми расположен внеклеточный домен[176]. Показано, что CD317 непосредственно взаимодействует со зрелыми дочерними вирионами, «привязывая» их к поверхности клетки[177]. Для объяснения механизма такого «привязывания» предложено несколько альтернативных моделей, которые, тем не менее, сходятся в следующем: молекулы CD317 формируют параллельный гомодимер; один или два гомодимера связываются одновременно с одним вирионом и клеточной мембраной. При этом с мембраной вириона взаимодействуют либо оба мембранных «якоря» (трансмембранный домен и GPI) одной из молекул CD317, либо один из них[177]. Спектр активности CD317 включает, по крайней мере, четыре семейства вирусов: ретровирусы, филовирусы, аренавирусы и герпесвирусы[175]. Активность данного клеточного фактора ингибируется белками Vpu ВИЧ-1, Env ВИЧ-2 и SIV, Nef SIV, гликопротеином оболочки вируса Эбола и белком К5 герпесвируса саркомы Капоши[116][117][122][123][175][178][179]. Обнаружен кофактор белка CD317 — клеточный белок ВСА2 (Breast cancer-associated gene 2; Rabring7, ZNF364, RNF115) — Е3-убиквитинлигаза класса RING. BCA2 усиливает интернализацию вирионов ВИЧ-1, «привязанных» белком CD317 к поверхности клетки, в CD63+ внутриклеточные везикулы с их последующим разрушением в лизосомах[180].

Vezi și

Note

  1. James E. Rickman. Human genes may predict AIDS progression rate (англ.). Los Alamos National Laboratory News Bulletin (14 июля 2003). Архивировано 23 марта 2004 года.
  2. Таксономия вирусов (англ.) на сайте Международного комитета по таксономии вирусов (ICTV).
  3. Медпортал. ВИЧ-инфекция и СПИД
  4. Weiss R.A. How does HIV cause AIDS? (англ.) // Science. — 1993. — May (vol. 260, no. 5112). — P. 1273—1279. — doi:10.1126/science.8493571. — . — PMID 8493571.
  5.  Rev. : jurnal. - 2009. - Vol. 60 .
  6. 3 .  
  7. 2 .  
  8. 1 2 3 4 5 6 7 8 9 NIAID/NIH: The Relationship Between the Human Immunodeficiency Virus and the Acquired Immunodeficiency Syndrome
  9. 1 2 Alimonti J.B., Ball T.B., Fowke K.R. Mechanisms of CD4+ T lymphocyte cell death in human immunodeficiency virus infection and AIDS. (англ.) // Journal of General Virology : jurnal.7 .
  10. UNAIDS, WHO. 2007 AIDS epidemic update (англ.) (PDF) 10 (декабрь 2007). Дата обращения: 12 марта 2008.
  11.  Infecta. Dis. : jurnal. - 2003. - Vol. 5 .
  12.  : jurnal. 3 .  
  13.  : jurnal. 4 .  
  14. Роксби, Филиппа. Почему сейчас люди с ВИЧ живут столько же, сколько и здоровые, BBC News Русская служба (11 мая 2017). Дата обращения 25 июня 2020.
  15. Ziarul.Ru .
  16. «Неопределяемый = не передающий». SpidCenter. Дата обращения: 27 января 2021.
  17. . 
  18. Медработники должны рассказывать о тезисе «U = U» всем ВИЧ+. life4me.plus. Дата обращения: 27 января 2021.
  19. Центр СПИД - НЕОПРЕДЕЛЯЕМЫЙ = НЕ ПЕРЕДАЮЩИЙ. www.hiv-spb.ru. Дата обращения: 27 января 2021.
  20. . 
  21. Public Health Image Library Scanning electron micrograph of HIV-1 virions budding from a cultured lymphocyte. See PHIL 10000 for a colorized view of this image, and PHIL 14270, for a black and white version, both viewed at a lower magnigication
  22. Department of Health and Human Services. Centers for Disease Control and Prevention’s Public Health Image Library (PHIL), image #948.Проверено 27 июля 2012.
  23. 21 .  
  24. 1 2 3 4 5 History of AIDS Up to 1986 (англ.). AVERT. Дата обращения: 21 июля 2014.
  25.  Muritor. Reprezentant. : jurnal. 
  26.  Muritor. Reprezentant. : jurnal. 
  27.  - 2006. - Vol.
  28.  : jurnal. 19 .  
  29. Barré-Sinoussi F., Chermann J.C., Rey F., Nugeyre M.T., Chamaret S., Gruest J., Dauguet C., Axler-Blin C., Vézinet-Brun F., Rouzioux C., Rozenbaum W., Montagnier L;. Isolation of a T-lymphotropic retrovirus from a patient at risk for acquired immune deficiency syndrome (AIDS) (англ.) // Science : journal. — 1983. — Vol. 220, no. 4599. — P. 868—871. — doi:10.1126/science.6189183. — . — PMID 6189183.
  30. The history of AIDS 1981—1986 (англ.). AVERT. Дата обращения: 21 июля 2014.
  31. 37 .  
  32. (engleză)  // Jurnalul de medicină din New England. 24 .  
  33. (engleză)  // Jurnalul de medicină din New England. 24 .  
  34.  
  35. 2 .  
  36.  
  37. 5 .  
  38.  
  39.  
  40.  
  41. The Nobel Prize in Physiology or Medicine 2008 Press Release (англ.). — «Harald zur Hausen, Françoise Barré-Sinoussi, Luc Montagnier». Дата обращения: 21 июля 2014.
  42. 1 2 3 4 5 6 Levy J.A. HIV and the pathogenesis of AIDS. — USA: American Society for Microbiology, 2007. — ISBN 978-1-55581-393-2.
  43. 16 .  
  44. 9 .  
  45. James Wilton. From exposure to infection: The biology of HIV transmission (англ.) (недоступная ссылка). Дата обращения: 10 сентября 2014. Архивировано 10 сентября 2014 года.
  46. Jpnh G Bartlett. [hopkons-hivguide.org Карманный справочник. Лечение ВИЧ-инфекции и СПИДа у взрослых]. — Медицинская школа Университета Джонса Хопкинса, 2008. — 138 с.
  47. 5 .  
  48. Recommendations for Use of Antiretroviral Drugs in Pregnant HIV-1-Infected Women for Maternal Health and Interventions to Reduce Perinatal HIV-1 Transmission in the United States (англ.). AIDSinfo.nih.gov (12 октября 2006). Дата обращения: 21 июля 2014.
  49. Всемирная организация здравоохранения. HIV transmission through breastfeeding. A review of available evidence. — 2007. — ISBN 9789241596596.
  50. 5 .  
  51. Centre pentru Controlul și Prevenirea Bolilor. (engleză) . 3 .        
  52. «Устойчивость вируса ВИЧ во внешней среде» O-spide.ru Официальный интернет-портал Минздрава России о профилактике ВИЧ/СПИД
  53. Приведено согласно Figure 1, опубликованной в Pantaleo, G et al. New concepts in the immunopathogenesis of human immunodeficiency virus infection (англ.) // New England Journal of Medicine : journal. — 1993. — 4 February (vol. 328, no. 5). — P. 327—335. — PMID 8093551., также доступна Figure 4 в The relationship between the human immunodeficiency virus and the acquired immunodeficiency syndrome (англ.) (недоступная ссылка). US National Institute of Allergy and Infectious Diseases. Дата обращения: 3 ноября 2009. Архивировано 30 ноября 2009 года. Дополнительная информация опубликована в Piutak, M et al. High levels of HIV-1 in plasma during all stages of infection determined by competitive PCR (англ.) // Science : journal. — 1993. — 19 March (vol. 259, no. 510). — P. 1749—1754. — PMID 8096089.
  54. . Consultat la 16 iunie 2013. Arhivat din original pe 16 iunie 2013.
  55. Consultat la 16 iunie 2013. Arhivat din original pe 16 iunie 2013. 
  56. (недоступная ссылка) . 
  57. Centre pentru Controlul și Prevenirea Bolilor.  
  58. aids.gov. Just Diagnosed with HIV AIDS: Understand Your Test Results: Viral Load (англ.). U.S. Department of Health & Human Services. Дата обращения: 21 июля 2014.
  59. WebMD Medical Reference from Healthwise. Human Immunodeficiency Virus (HIV) Test (англ.). Healthwise. Дата обращения: 21 июля 2014.
  60. ВИЧ.рф тест на ВИЧ. Дата обращения: 12 сентября 2014.
  61. ВИЧ/СПИД: Тестирование и консультирование. Дата обращения: 12 сентября 2014.
  62. ziar rusesc.
  63. Тест на ВИЧ с точки зрения права. Николай Недзельский. Дата обращения: 21 июля 2014.
  64. (engleză) .  
  65. Jon Cohen. An intriguing—but far from proven—HIV cure in the ‘São Paulo Patient’ (англ.). Science Mag (7 июля 2020). doi:10.1126/science.abd6947. Дата обращения: 10 июля 2020.
  66. UNAIDS, WHO. 2007 AIDS epidemic update (англ.) (PDF) 10 (декабрь 2007). Дата обращения: 12 марта 2008.
  67. aidsmap. Ожидаемая продолжительность жизни для некоторых групп ВИЧ-инфицированных лиц в США теперь значительно превосходит её средний показатель (недоступная ссылка). Дата обращения: 26 января 2015. Архивировано 7 марта 2015 года.
  68. Антиретровирусная терапия online. Продолжительность жизни людей с ВИЧ, получающих АРВТ в развитых странах
  69. US National Library of Medicine National Institutes of Health. Closing the Gap: Increases in Life Expectancy among Treated HIV-Positive Individuals in the United States and Canada
  70. 8 .  
  71. (engleză)  // Jurnalul de medicină din New England. - 1996. - Vol. 15 .  
  72. Sterne JA , Hernán MA , Ledergerber B. , Tilling K. , Weber R. , Sendi P. , Rickenbach M. , Robins JM , Egger M. Long-term effectiveness of potent antiretroviral therapy in preventing AIDS and death: a prospective cohort studiu.  
  73. Starting, Monitoring & Switching HIV Treatment (англ.). AVERT. Дата обращения: 21 июля 2014.
  74. NIH.  
  75. World Health Organization. Consolidated guidelines on the use of antiretroviral drugs for treating and preventing HIV infection (англ.). Дата обращения: 13 августа 2014.
  76. UNAIDS. Gap report (англ.). Дата обращения: 13 августа 2014.
  77. AVERT. HIV treatment children (англ.). Дата обращения: 13 августа 2014.
  78. Janet Karpinski, Ilona Hauber, Jan Chemnitz et al. Directed evolution of a recombinase that excises the provirus of most HIV-1 primary isolates with high specificity (англ.) // Nature Biotechnology : journal. — Nature Publishing Group, 2016. — doi:10.1038/nbt.34.
  79. Немецким учёным удалось победить вирус иммунодефицита человека Новости высоких технологий (Дата обращения: 1 марта 2016)
  80. .  
  81. В США одобрен препарат для лечения ВИЧ с новым механизмом действия
  82. Дата обращения: 29 марта 2019.
  83. Kurth, R; Bannert, N. Retroviruses: Molecular Biology, Genomics and Pathogenesis. — Caister Academic Press, 2010. — ISBN 978-1-904455-55-4.
  84. 4 .  
  85.  : jurnal. - 1989. - Vol.  
  86. Comitetul Internațional pentru Taxonomia Virușilor (ICTV).  
  87. Джон Бартлетт. Типы и подтипы ВИЧ // Клинические аспекты ВИЧ-инфекции. — 2009. Архив
  88. HIV Strains: Types, Groups and Subtypes (англ.). AVERT. Дата обращения: 21 июля 2014.
  89. 1 .  
  90.  : jurnal.
  91. Presa Universitatii Oxford.
  92. 1 2 3 4 [1] Introduction to HIV types, groups and subtypes. March 3, 2008. Retrieved May 25, 2008.
  93.  - 2001. - Vol. Pt 3 .  
  94. Hemelaar J., Gouws E., Ghys P.D., Osmanov S. Global and regional distribution of HIV-1 genetic subtypes and recombinants in 2004. (англ.) // AIDS : journal. — 2006. — March (vol. 20, no. 16). — P. W13—23. — doi:10.1097/01.aids.0000247564.73009.bc. — PMID 17053344.
  95. First New HIV Strain in 19 Years Identified — Scientific American
  96. Peeters M., Gueye A., Mboup S., Bibollet-Ruche F., Ekaza E., Mulanga C., Ouedrago R., Gandji R., Mpele P., Dibanga G., Koumare B., Saidou M., Esu-Williams E., Lombart J.P., Badombena W., Luo N., Vanden Haesevelde M., Delaporte E. Geographical distribution of HIV-1 group O viruses in Africa (англ.) // AIDS : journal. — 1997. — March (vol. 11, no. 4). — P. 493—498. — doi:10.1097/00002030-199704000-00013. — PMID 9084797.
  97. Mourez T, Simon F, Plantier JC. Non-M variants of human immunodeficiency virus type 1. Clin Microbiol Rev. 2013 Jul;26(3):448-61
  98. AVERT.org. HIV Strains: Types, Groups and Subtypes (англ.). Дата обращения: 24 июля 2014.
  99. Julie Yamaguchi, Ruthie Coffey, Ana Vallari, Charlotte Ngansop, Dora Mbanya, Nicaise Ndembi, Lazare Kaptué, Lutz G. Gürtler, Pierre Bodelle, Gerald Schochetman, Sushil G. Devare, Catherine A. Brennan. Identification of HIV Type 1 Group N Infections in a Husband and Wife in Cameroon: Viral Genome Sequences Provide Evidence for Horizontal Transmission (англ.) // AIDS Research and Human Retroviruses : journal. — 2006. — January (vol. 22, no. 1). — P. 83—92. — doi:10.1089/aid.2006.22.83. — PMID 16438650.
  100. Plantier J.C., Leoz M., Dickerson J.E., De Oliveira F., Cordonnier F., Lemée V., Damond F., Robertson D.L., Simon F. A new human immunodeficiency virus derived from gorillas (англ.) // Nature Medicine : journal. — 2009. — August (vol. 15, no. 8). — P. 871—872. — doi:10.1038/nm.2016. — PMID 19648927.
  101. New HIV strain discovered, Associated Press, CBC News (3 августа 2009). Архивировано 5 августа 2009 года. Дата обращения 3 августа 2009.
  102. .
  103.  
  104.  
  105. 29 . 
  106. Guidelines for the Use of Antiretroviral Agents in HIV-1-Infected Adults and Adolescents (англ.). U.S. Department of Health and Human Services. — «Инфекция ВИЧ-2 эндемична в Западной Африке и имеет лишь ограниченное распространение за пределами этой зоны.». Дата обращения: 21 июля 2014.
  107.  - 2005. - Vol. 19 .  
  108.  - 2001. - Vol. 356 , nr.  
  109. 8 .
  110. Pagina 3
  111. — 2008.
  112. 1 .  
  113. 4 .  
  114. 11 .  
  115. 7 .  
  116.  
  117. 9 .  
  118. 6 .  
  119. 2 .  
  120.  
  121. 4 .  
  122.  
  123. 3 .  
  124. 1 2 3 4 5 6 7 Votteler, J. and Schubert, U. (2008) Human Immunodeficiency Viruses: Molecular Biology. Encyclopedia of Virology. (3rd ed.) 517—525
  125.  - 2000. - Vol. 22 .  
  126.  
  127. 1 2 3 Montagnier, Luc. (1999) Human Immunodeficiency Viruses (Retroviridae). Encyclopedia of Virology (2nd Ed.) 763—774
  128. Ştiinţă.  
  129. 1 .  
  130.  - 2000. - Vol. 16 .  
  131. Cold Spring Harb Perspect Med.
  132. Информация о ВИЧ на сайте NIAID (англ.). Дата обращения: 7 августа 2014.
  133. Размножение вируса иммунодефицита человека в клетке
  134. 1 2 Патогенез ВИЧ-инфекции. Архивная копия от 24 сентября 2015 на Wayback Machine
  135. Levy J.A. HIV and the pathogenesis of AIDS. — p. 110, 111, 160, 161 — USA: American Society for Microbiology, 2007. — ISBN 978-1-55581-393-2
  136.  - 2012. - Vol. 2 .  
  137. John Hopkins AIDS Servise Жизненный цикл ВИЧ-инфекции Архивная копия от 8 июля 2007 на Wayback Machine
  138.  - 1996. - Vol.  
  139. Survival outside the body Архивная копия от 29 декабря 2015 на Wayback Machine / HIV transmission & testing, NAM Publications (англ.)
  140. (link indisponibil) 
  141. 2 .  
  142. 4 .  
  143.  - 1997. - Vol. 8 .  
  144. Cold Spring Harb Perspect Med.
  145. Генетический ластик для ВИЧ. Фонд развития межсекторного социального партнёрства. Дата обращения: 21 июля 2014.
  146.  - 2014. - Vol. 26 .  
  147.  - 2014. - Vol. 31 .  
  148. Кирилл Стасевич. Клетки человека избавили от ВИЧ. Наука и жизнь. nkj.ru (25 июля 2014). Дата обращения: 27 июля 2014.
  149.  - 1999. - Vol.
  150. Worobey M., Gemmel M., Teuwen D.E., et al. Direct evidence of extensive diversity of HIV-1 in Kinshasa by 1960 (англ.) // Nature : journal. — 2008. — October (vol. 455, no. 7213). — P. 661—664. — doi:10.1038/nature07390. — PMID 18833279.
  151. Salemi, M.; Strimmer, K; Hall, WW; Duffy, M; Delaporte, E; Mboup, S; Peeters, M; Vandamme, A.M. Dating the common ancestor of SIVcpz and HIV-1 group M and the origin of HIV-1 subtypes by using a new method to uncover clock-like molecular evolution (англ.) // The FASEB Journal : jurnal.2 .
  152.  - 2000. - Vol.
  153. Worobey M., Gemmel M., Teuwen D.E., et al. Direct evidence of extensive diversity of HIV-1 in Kinshasa by 1960 (англ.) // Nature : journal. — 2008. — October (vol. 455, no. 7213). — P. 661—664. — doi:10.1038/nature07390. — . — PMID 18833279.
  154. Lenta.ru: Наука и техника: Наука: Учёные определили место и время рождения ВИЧ
  155. Gao F., Bailes E., Robertson D.L., et al. Origin of HIV-1 in the chimpanzee Pan troglodytes troglodytes (англ.) // Nature : journal. — 1999. — February (vol. 397, no. 6718). — P. 436—441. — doi:10.1038/17130. — . — PMID 9989410.
  156. Keele, BF, van Heuverswyn, F., Li, YY, Bailes, E., Takehisa, J., Santiago, ML, Bibollet-Ruche, F., Chen, Y., Wain, LV, Liegois, F., Loul, S., Mpoudi Ngole, E., Bienvenue, Y., Delaporte, E., Brookfield, JFY, Sharp, PM, Shaw, GM, Peeters, M., and Hahn, BH Chimpanzee Reservoirs of Pandemic and Nonpandemic HIV- 1  (англ.)  // Science : journal.
  157.  - 2001. - Vol. 356 , nr. Copie arhivată (link indisponibil) .    
  158. Reeves, JD și Doms, RW Virusul imunodeficienței umane tip 2  (англ.)  // Journal of General Virology., 2002. — Vol. 83, no. Pt 6. — P. 1253—1265. — doi:10.1099/vir.0.18253-0. — PMID 12029140.
  159.  - 2005. - Vol. 11 , nr. 12 .
  160.  - 2001. - Vol. 356 , nr.  
  161.  - 2008. - Vol. Arhivat din original pe 13 ianuarie 2012. Copie arhivată (link indisponibil) .    
  162. 4 .  
  163.  - 2000. - Vol. 1 .
  164. .
  165.  - 1998. - Vol.  
  166. Moartea băiatului din 1969 sugerează că SIDA a invadat SUA de mai multe ori , The New York Times  (28 октября 1987). Дата обращения 11 февраля 2009.
  167. Apariția HIV/SIDA în America și nu  numai (англ.)  (недоступная ссылка) . Архивировано 28 марта 2012 года.
  168. Randy Dotinga. Genetic HIV Resistance Deciphered (англ.). WIRED.com // Condé Nast. Дата обращения: 21 июля 2014.
  169. Прививка или смерть // Популярная механика  : журн.. — 2018. — № 9.
  170. 4 .  
  171. 2 .  
  172. Natură.
  173. Restricționarea unui retrovirus extins de către proteina antiviră umană TRIM5α (англ.)  // Science : journal.  
  174.  
  175. 12 .  
  176. 10 .  
  177. 3 .  
  178. 5 .  
  179. 9 .  
  180. 12 .  

Literatură

Link -uri